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SUMMARY

15434,

An integral expansion model is developed as a preliminary
step in a theoretical model for the nrediction of expansion resulting
from a hypervelocity impact. The integral model is developed for thc
symmetrical (sphere, infinitely long cylinder or semi-infinite plane)
expansion of a gas cloud into a vacuum. The mass, momentum and energy
are conserved on a total integrated basis at all times during the
expansion. Only the internal and kinetic energies are considered for

the conservation of energy. The expansion is assumed to be isentropic.

The density, particle velocity and sound velocity variations
with distance agree closely with those obtained from a finite difference
solution for the initial times after the cloud is allowed tc expand.
After long periods of time, when the expansion flow becomes inertia
dominated, the distributions of density, particle velocity, and sound

velocity approach closely the long term self-similar results,

The integral model is a relatively fast method of obtaining
the distributions of the density, particle velocity, and pressure with
distance for different times during the expansion of an element. It

takes less than a minute on an IBM 7040 computer to calculate 30 time

—
increments for a cylindrical expansion, <3LL&JLQA41A(’
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cross-sectional area

power coefficient in density profile (Eq. 2.13)
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(r- rd/r,-ri)
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non-dimensional time t/(d./Z)/O.s

time at which the expansion front reaches the
center line,
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1.0

Introduction:

The symmetrical expansion of a plane, cylindrizal or spherical
homogeneous mass of fluid into a vacuum is governed by the con-

servation equationsin the iollowing forms, plus an equation of

state,
9 W o+ 9P ‘o = O (1.1)
SR % IR
Wwoouwm + L 2 -0 (1.2)
Qt or oln

|
W + u X +1>3<79") = O (1.3)

2 = f(‘F,/D) (1.4)

Equation 1,2 for the conservation of momentum neglects shear and
body forces and therefore equation 1,3, for the conse~vation of

energy, assumes the expansion flow is isentropic (i,e. 4_§ -0 )-

dt
The four equations 1,1 to 1.4 may be solved for the four
dependant variables/9 , U ,19 , and & as functions of the two
independant variables I' and t , 1f an equati- 1 of state (Eqn. 1.4)
is specified, Closed form analytical solutions are available for
the planar case (j =0) (Ref, 1), and the cylindrical and spherical

cases (j = 1, 2) for certain specified conditions (Retf. 2),



Numerical methods may be used to solve the set of equations
1.1 to 1.4 for the general case (Ref. 3). However these methods
require relatively long computer times to obtain close appro-
ximations for the expansion flow, and become unnecessary after
long periods of time when the expansion becomes inertia dominated

and self-similar solutions may bz used.

An integral expansion model was developed in order to obtain
a simple appruximate solution for the variation of the dependant
variables with I" and 't , for short and long periods of time. The
integral model satisfies the conservation equations on a total
integrated basis over the expansion region at any time, A form for
the density and particle velocity distributions, with I’ , was
specified, The forms assumed for these distributions (Sec. 2.0)

were similar to the jong term self-similar distributions (Ref. 1).

In the following sections the integral model will be developed
for the expansion of an element of an infinitely long cylinder as
an expansion of tvhis type is required for thé developﬁent of a
theoretical model to predict the expansion resulting from a hyper-
velocity impact, Planar and spherical .xpa.sion solutions are

developed in Appendices B and C,

g



2.0 Assumptions for the Cylindrical Model:

An infinitely long cylinder of diameter 'd" was assumed to

s and a

contain a homogeneous mass of fluid with a density "
velocity of a sound "(Q". The particle velocities ‘vere assumed
to be zero, At time t = 0 the mass of fluid was assumed to be
unrestricted and allowed te expand into a surrounding vacuum,

The resulting radial expansion of an element of the cylinder with
thickness "82;" was considered. No axial expansion of the element
will occur due to the infinite length of the cylinder, The model

for the expansion of a finite cylinder with axial components of

particle velocity will be presented in another report.
The material was assumed to expand as an ideal gas with:
:EL = const, 2.1
pv S ( )

The outside particles were assumed to move radially away from

the centre axis at tlie constart escape velocity,

Mpe = _2_ Qg - (2.2)
¥-1

A rarefaction wave was assumed to move rad.ally into the eclement
at the velocity of sound "Cls". Equation (2.2) fixes the outside

radial boundary of the expanding cylindrical element as:
o = d/z 4 g T (2.3)

The position of the front of the inward moving rarefaction wave

can be determined as a function of time knowing the sound velocity.

6 = dh — ot (2.49)

L



Once the rarefactiorn waove has moved to within .0001 times the
original radius of the cylinder it was assumed to remain at that

position and

r, = .ooot df2 (2.4b)

Figure 2.1 shows schematically the variation of density and
particle velocity with respect to the radius for various run-
dimensional times after release of the elementf A non-dimensional
time of 1 would occur when the ingoing rarefaction wave has

reached the centre of the cylindrical element and can be expressed

as
[
= t (2.5)
@2 )a,
;"
At—1—1 , T e e - Gt
~ 'S v t=o by AR
- - !\\ ! ,(___ l
<1~{% ‘\\} \P~~tl_, g V. t'>1
~ ~3 ="z — |/
I LN Z [} .,
> \:\ , ~ ’}. ‘
4 b RN AN A gL
@ ! 4 = VR
(Dq \\ Iy ol ’// ]
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L To w H o
Radius Radius ;
(a) (b) :
Density and Particle Velocity vs Radius %
Figure 2.1 ;

At t' =0, before expansion occurs, the density is constant

PP TrY A NCY

and equal to Ps over the original radius d/2,, and the particle

5 g1

velocity 1is zero throughout the cylinder.




At t’ = % the ingoing rarefaction wave has progressed into

the cylinder % the original radius to a position at r; . The
original outside particles of the cylinder have expanded outward
to a position ry which can be obtained from equations (2.2) and

(2.5). Between the radii ry and ry the density and particle

velocity will vary in some manner so that:

at re , e = Uss (2.6)
and fk- = O (2.7)
at Y yrg = O (2.8)

Ps (t'<1) (2.9)

30
v

Equations (2.6) to (2.9) specify the required boundary conditions
if the cylinde: is expanding into a vacuum at a constant escape
front velocity,and the rarefaction wave moves inward at the local

sound velocitf.

At t’)nl the rarefaction wave will have reached the ceuntre
" of the cylinder and the density at the centre will have decayed
from the original value /Ds to some reduced value /Dc' Therefore

the boundary condition for the density at ry will become,

at r';' ) ’0!. = P (2. 10)
[

The other bouudary conditions, equations (2.6) to (2.8) will
remain the same, The value of f%, which is a function of time

is determined “rom a core model as discussed in section 4.
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At any time during the expansion the total mass, momentum,
and energy were conserved, The integral forms of the conservation

cquations for a cylindrical element are:

To

Mass MR = ZTTS‘T_'.j Pf rdyv (2.11)
.

Momentum

The total momentum is automatically conserved by assuming
the expansion to be symmetrical about the axis, as the change in
momentum along any particle path is balanced by an equal change

in momentum along another particle path in the opposite direction.

Energy
Ee - Zbe (- Sy
= r o Mr rdr (2.12)
4 1 ’tjpr[‘e(tq) 2 ]
a f

A is the specific internal energy
¥ (d-1)

and éﬁ? is the specific kinetic energy

A

The conservation equations in their integral forms 2.11 and

where

2.12 require profile forms for the density and particle velocity
variation with respect to the radius in order to evaluate the
integrals for a particular time. The velocity of sound Qr was
assumed to be a function of&, and the densityf% . The profile
forms assumed for the density and particle velocity variations with

the radius are:

‘<€
For T Eiéf)

R =P [..- E‘_'l] (2.13)

(2.14)

e

e

[EUN SIS
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For T > Bét)

Pe=Fe [' - (-';—)1 (2.15)

Lo = Uss <%,) (2.16)

The profile forms for t’)l, equations (2.15) and (2.16), are
the same as those obtained for the long term self-similar flows
when the expansion becomes inertia dominated and the pressure terms
are neglected (Reference 1). The profile forms for tlé 1, equations

{

(2.13) and (2.14) were obtained by modifying the Jong term expansion
profiles in the light of some iritial results obtained. For the
initial times after expansion,r; is not negligible compared to r,
and was therefore allowed for. It was found unnecessary to specify
a linear velocity profile as the unknown value of C(t) could be
determined for t’é 1. The density was not made proportional to
(%O)z as the density decreased abruptly at r; rather than in a

1
continuous manner as it does for t > 1 when the rarefaction has

reached the centre.
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3.0 Short Term Zylindrical Expansion:

The short term expansion is used here for the expansion of

the element during the time t! =0 to t! = 1. The unknown exponents

B (t) and C(t) in equations 2.13 and 2.14 were determined from the
2 conservation equations 2.11 and 2.12. Once the exponents B(t)
and C(t) had been determined the density and particle velocity

profiles were determined from equations 2.13 and 2.14.

The toial mass and energy within the expansion region is
equal to the mass and energy of the original element minus that

which remains in the unexpanded region at any time,

Me = pbx [(d/z)l- Y‘cz] (3.1)

EE = MR 052 ' (3.2)
¥(¥-1)
where n o= d/Z - QO t (2.4)

Substituting for Pr in equation 2,11 from equation 2.13,

PR 143
Mz = 2Xtéx ‘ @t"- -';;-rr—} rdr (3.3)
v, o™ '

Integrating (3.3), (Appendix A)

Mz = 211‘81,05 l‘ (o - n_)’- b N ln- D) (3.4)
L (B )(Bl)+2) (BO+1 )

and B(t) may be solved for at any time t knowing:

o = d./l. +* xf| ast (2.2)

r = dfz2 - a,t (2.3)

13



Once B(t) is uvotained C(t) may be determined from the energy
eguation (2.12). Substituting for/l)r, Qp> Ay in Eqn. 2.12,

and using the ideal gas relation:
3!
ar = Qs (E_r = (3.5)
Ps
N ) _
Ec = 2rbxe $ Ps[l- r-r <l
r ro—ri_

-+ AJ_?I -, )7-C<t) (3.6)
2 % -7

Integrating equation 3.6 (Appendix A),

ER = K\ as2 r ' J

¥-1) | (¥B2)¥B+1)

+K e |  B2¢.(2¢+1)  T(B)(2¢)
2 | @rxa2)mr2c+iXsr2c) T(Brac)

2 | (3.7
o gt [ ]
3(g-v) ¥8+ |

+ K, u,; l- B-2C r(eyr(zc)
2 L(B*”ZCH)(B*ZC) rg+2c) |

261 A (I", -r )2
257 81/05 (o-r) (3.8)

and V", and 7 are 'F(t)as before

)
=
©
H
o
~
1l

3
i

ER is given by Eqn. 3.2

From equations 3.7 and 3.8, C(t) may be obtained for the same

time chosen for the solution of B(t).

The distributions of Pr and U, with respect to the radilus,
for any time during the expansion, can be obtatnéd from the profiles
given in equations 2,13 and 2,14, and the determined values of B(t)

and C(t). Some calculated profiles are shown in section 6,
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4,0 Centre Line Decay:

After the ingoing rarefaction front reaches the centre axis,
a decay process takes place at the centre (Figure 2,1). This
decay process introduces an additional unknown /)c at the centre,
In order to determine haw/Dc varies with time, a simple core

model was considered.

When the front of the ingoing rarefaction wave reaches a
position a short distance away from the centre axis, it was
assumed to remain there, forming a centre axis core with a radius
rb = ,0001 d/2. This approach is consistant with other mathematical
solutions where the position at the centre (r = 0 andU, = 0) is

avoilded,

The volume and circumferential area of the core will remain

constant with respect to time as YE is assumed constant.
2
Y = T 870 (4.1)

Ae = 2rr. S (4.2)

At any time the mass within the core will be:
M, = /{_V& ‘ (4.3)

and the rate of mass flow outward from the core will be:

m = Af—ﬁ Ue (4.4)
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Equations (4.3) and (4.4) impose a limitation on the core
radius Y'C by assuming that the density (/)C) within the core is
constant with respect to the radius. Tmmediately after the
rarefaction wave reaches a distance V'c from the centre, (2P/ar-)
at r, is very large requiring r. to be small., After a period of
time (@D/Qr‘ } at r, becomes very small and the assumption that

f’c is constant throughout the core is a good approximation.

The rate of mass outflow from the core may also be expressed

as

m = - dM (4.5)
de

Then combining equations (4.4) and (4.5)

_% - - A»_LQ dI (4.6)
/Ao V.;,

and substituting for AC and Vé from equations (4.1) and (4,2)

o _ _ 2M 4 (4.7)

Pe fe

Now assuming a linear velocity profile from the center to the

outside radius V; (Equation 2,16)

He = Mes <f.<= (4.8)

1§
Equation (4.8) imposes a limit on I". as it implies that at
the same time the rarefaction front reaches I o, cthe particle

velocity increases from O at the centre.



~

- 12 -

Substituting (4.8) into (4.7) with
r:; = d/z + JL»SZ

e . _ _24s  dE (4.9)
Pe di2 « Ut

Integrating (4.9) with boundary conditions

Po — D t ——ty D
f%."‘”’ ﬁg T = dl2 -
) s
gives . 2
()C . P‘ (d/z + Aes Lo (4.10)
diz + Yes T

! ,0,_ . /D QE’ >Z
S ro
where ' is the radius of the escape front at the time when
the rarefaction would have reached the centre axis, Equation
(4.10) gives the value of Pc at the centre as a function of time.

After a long period of time rb becomes large with respect to

d/2 and from equations (2.3) and (4.10).

P o 1 (4.11)
tZ.

Equation (4.11) is consistant with the long term self-similar

solution for inertia dominated flow, (Reference 1). Equation

(4.10) will not apply for early times, just after the rarefaction

wave reaches the centre, due to the assumptions made in equatioms

(4.3), (4.4) and (4.8), as previously discussed. It is not

necessary to specify the density decay at the centre if a linear
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velocity profile is assumed as the two corservation equatioas
may be used to obtain two unknowns. Equation ‘4.10) may be

written as a general form for the density decay at the centre:

p(t)

'

= r 12

e’, Ps <?‘ (4.1.2'
o



- 14 -

5.0 Loug Term Cylindrical Expansion:

For the long term expansion, after the rarefaction reaches
the centre, a linear velocity profile was assumed and the two
conservation equations (2.11) and (2.12) were used to solve for

the two unknowns B(t) and D(t) equations (2.15) and (4.12).

The total mass and energy in the expansion region is equal

to the original total mass and energy of the element.

M- w(df2 )2 Cx ps (5.1)

E - M_&)__ (3.2)
¥(¢-1)
r 1

Let W= = and W, = ©_  then the relations to be substituted
o 9

o
into the conservation equations become, from (2.15), (2.16) and

(4.12)
( .
pop e ]
b}
‘Q. = f)g'\‘vl _ (5.3)
Mr = Mo W (5.4)

Substitvting for /0r, Q,., M, and ¥ in equations (2.11) and (2.12)
(Appendix A)

M= 2mbx SFS W,

)

() r(t)

[_»-xv‘] nLYdy (.5



HevdY  (s.6)

Integrating equations (5.5) and (5.6) (4ppendix A),

plt)
M= KV, (5.7)

2(8(p)+1)
£.K Ny, ¥D0) a,:'[ i :’
{ (¢ ) 2 (¥8(t)+1)

+ W, Dcf)auesl '
2 “_ 2(BUY+ )(B(t)+2.)]

where K, = 27 §x Fs Y‘oz

(5.8)

The two unknowns 8(t) and D(t) were determined from the two
;
simultaneous equations (5.7) and (5.8) at any time for T D 1. The

results are shown in the next section.
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The linear particle velocity distribution is consistant
w#ith the long term self-similar assumption cbtained from assuming

the flow to be inertia dominated.

The density distribution exponent B(t) approaches the

same value as that for the long term self-similar solutions

B8(t) = _2_ (Ref. 1) (6.3)
¥-1
Consider the internal energy portion which is the first term of

equation (5.8)

¥ (k)
I.E," = }Wg‘t&rol r aﬁ)[ ! ] (6.4)
¢ (¥-1) (r‘o) 2(¥m(t)+1)

and I.E, = const, J i r;)‘/r ‘b‘D(t)] (6.5)
¥B(t)+ | ?

The value of D(t) approaches 2 and any variation inB(t)

is insigrificant compared to the increase in \"‘o so

I.E. & const.(..'..> (6.6)

G

From (6.6) it can be seen that as Y'o becomes large the internal
energy approaches zero as long as 8 > 1. The internal energy will
approach zero more quickly as X\ is increased. This is shown by

the results in figure 6.5.

Cons.dering only the kinetic energy term of equation (5.8),

and substitute for Wl from equation (5.7), then

P
B) = M les _ 2 (6.7)
2E
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integrated mass. This error could also be part of the cause

for the discrepancy in the centre line density decay (Figure 6.6).
In any case the differences between the two models are small and
would indicate that the integral model density distribution is a

good approximation.

Figure 6.8 shows the comparison of particle velocity profiles.
Initially the finite difference solutica departs from the linearity

approximation, but rapidly approaches a linear distribution.

The descrepancies between the particle velocity profiles are
small and would indicate that the integral model would approximate

the expansion flow closely,
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6.0 Comparison of Results:

Figures 6.1 to 6.4 show the variations of sound velocity,
particle velocity, pressure and density with radius for various
times (t’( 1 and t’> 1). B(t), C(*) for the short term, and
B(t) and D(t), with G(t) = 1, for the long term were first
determined from the conservation equations. Then from the profile
and decay forms, the distribution of density (Fig. 6.4) and
particle velocity (Fig. 6.2) were determired as functions of
radius for the times shown. Figures 6.1 and 6.3 were obtained

from the density profile assuming the ideal gas relations:

¢!
Q = Qg (%‘ > L (6.1)
S
¥

Pe= P (%) .2

The relationships shown in Figures 6.1 to 6.4 were calculated
using\f = 3, Figure 6.5 shows the variation of the exponent D(t)
for the density decay vs time for different values of x . It can
be seen from figure 6.5 that the decay exponent very quickly
approaches the long term self-similar value of 2 (Reference 1) for
the higher values of X‘ . It appears, however, that the decay
exponent (D(t)) does not quite reach the long term self-similar
value of 2. This descrepancy could be due to the internal emergy
term which is not included in the long term self-similar soldtions

(Ref, 1).

et et B aame wm e e v

Bt A 2 s e
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Substituting for E' , equation (6.7) becomes

Hl:l i‘ ) - 2-

. ——

$-
which is consistant with the long term self-sinilar deunsity

distribution exponent (equation €.3).

In order to demonstrate the validity of the initial profiles
of the dependant variables with radius and time, the results
obtained from a firite difference solution are shown in figurcs
6.6 to 6.8. Figure 6.6 shows the centre line density ratio
(/£0AS) vs non dimensional time (i/) for both the finite differcnce
and the integral solutions. It can be seen that in the integral
model, the centre line density decays fasier than in the finite
difference solutions with the difference between the two solutions

rapidly becoming small.

Figure 6.7 shows a comparison of the density profiles for
the integral and finite difference solutions. There is virtually
no difference between the two models until the ingoing rarefaction
wave reaches the centre. In order to compare profiles, the centre
line density of the integral model was made the same as that of
the finite difference solution. It can he seen that the density
obtained by the integral solution decreases more quickly with
increasing radius than that obtained from the finite difference
solution. This would indicate that an error has accumulated in

the finite difference solution as it does not satisfy the total

Legbibe o ochiat iean
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Conclusions:

[t may be concluded from the comparison of results
that the integral model will give a good approximation
for the distribution of density, sound velocity, particle
velocity and pressure vs radius, at any time, resulting
from the radial expansion of a cylindrical clement of ar

infinitely long cylinder of fluid into a vacuum.

The integral model is a simple and fast method of
calculating the expansion parameters., It takes less than

a minute to calculate 30 timc increments on an IBM 7040.

The plane and spherical expcision results given in
Appendices B and C, indicate that the integral model may be

equally wecll applied to these types of expansiors,
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APPENDIX A

CYLINDRI AL EXPANSION

a) Short Term Integral Expansion

The forms assumed for the density and velocity

distributions are:

BR®)

p-pl-=%

6
Mr = Ues <r‘_r) A2

B () and C(T) may be determined from the conser-
vations of mass and momentum in their total integral

forms:

ngxp' rar A.3

L—-—'\

Eq = &21181_/0,- L‘“‘") —ZL ]V‘dr AL

Substituting A.1 into A.3, B(t) may be deterwmined.

Let E = (‘;r:’_

e
then r=- r + (r‘o- r;)fZ
(r-r)dR

A (1 stec)

and the limits for A.3 become
r=1r; €=o
(= 1P = |

o Mz 2mbe fy S(n-t?)s&fn +(-)R](r- )R A5

Y R A el oy e b oMbt ® v Sk x s

g
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re-arranging A.5 | o
M= 2bxpy i(ro-r;)ﬂ('—e) RAR
i
+Tc(fo—ﬁ3g —Q)Ba)des A6

using a Gamma function (") form for the solution

‘((I-Q)‘Leqjde = P("’*)r‘("jﬂ)
5 r1ZEi+fj*'7;)

equation A,6 may be integrated to give:

M- I , {(r-r))® P8O )2
g 4T 'p [ r) a5 5)2
+rilh-r) PO | s
r(ew2) |

Simplifying A.8

Me= 21783;/0, CQ‘(‘;Y‘ + W(fo-f;) A.9
Bl +2)BE)+1 )  BE)+

8(1) was solved for numerically from equation A.9 at

any given time where:

o prese [(H)- ]
v, = df2 - ast

+~
b = df2 ”“ZTT Qs C A 10

C(t) was determined knowing B({) and using the
profile forms A,1 and A.2 together with the conservation

of energy A.4,
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For an ideal gas:

and Qr‘z = (— ) A, 11

)

Then substituting for/Dr, ar’ and/(i, in the

energy equation A.4 with

R = —
G-

e, (1-R)™ [0 (-RY S
pr (-l a)”
2cL*

M_,,__:Q :H:m(r.,. Yo G- dR  a
2 J

Re-arranging A.12

SRR

Ee-ZTrSz,osé,—r) % ju-ra) RAR,

K‘(& D

’ 2 5@) 20+
+ 2nfo /35 Q:,-r;)z 0.;5 ( e de

+ 2 i 0 (-1
& >w«>
21’-'915& o~ T, S |
+ !nr(r r)a_% §|

o

alt) 2¢&)

j(' Q)&B&)de A.13
(- "R 4B

Integrating A.13 using the M function form (A.7) and

letting:

Ki = 21‘1‘81 Ps <ro‘r{,>2 A 14
Ky = 2”‘5”—/% e (% ~V‘;) A.15
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Fe = Ki_0s F‘(&B&)+s)\"(z)
gl-) ) rlgs)+3)

vk el | nBE@+ (2 £ 2)
2 P(3G) +2¢(t) +3)

A.16

+ Ky _a_.:__ -F‘CKB(I)#-I)F(')
¥(-1) r(¥8(t) +2)

+ Ky a_{ ) r(B&)+1) F‘(Zc(fc)-!-l) {
% r(BLt) +2c(t)+2)

Siwplifying A,16

Ee =

K\ Qsl !
m._g [(as&;ﬂz){%&&)u)}

4 K 4;[ R 2ett)+)(2c () rlelel) r(2et) ]

Z |(Ble)r2ete)e2)(B(t)+28)+ Y BE+20() NCOI)
A.17

+k _as [
&) | (et «1)

+ Ky Mes aty(2c(t)) F (8 (£Y) P (2e(t))
2 | (B +aelty B+ 20 () M(BGY+ 2¢ (1))

C (1) was solved for numerically from equation A,17 at

any given time knowing!?

BLL), Ki , Ky y M ana  Eg= §(T)
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b) lLong Term Integral Expansion

The assumed forms for the density and velocity
profiles with respect to and the density decay at the

centre with respect to time are:

o-pD-6)]"

Me = Algs (fﬁ’) A.19
)\ DCt)
= Lz A, 20
& < r‘o >
where Y'! = 44/2 + Mstc, A21

and ‘EC is the time taken for the head of the rarefaction

wave to reach a position
Ve = .0c0| (d/z_) A.22

/
The conservation of mass and energy for t 2 |

become
r,
M - ﬁi’rrgzﬁr rdr A.23
0
i} Q et
E = g & ﬁt&&f- + Ef]ralr A.24
and M = -rr(d/l) b f A.25
F- M_ad A.26

=)
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Substituting for/3r, M. and Q,r (equations A,18 - A,20) in

the conservation equations A,Z23 and A.24 with:

AV J% and N = — A.27
? 8(t) |
ar = 0,52 [W,D(t)él-’\y’) ] A.28

and,

!
BUt)
M = 2rréy SB W (»—"\P‘)Bwrozwdv A.29

al t ¥~
£ . 2mSx SPS'WD&)(’-'\V;)BC)%z(wnut')(l-‘wz)a&)S

A.30
-+ At_i_uz ’W:. ] r‘,szd\v

Simplifying A.29 and A,.30

M = 2n-9>¢/), 6 DLt)S 1-w?) VdW A.31
et

E =zﬁ$7./)5r P S )

\((&“) o ) 3

- 2rbep > xtas«y"“)s O-*) oy

Integrating A,31 and A,32

D)
+ |

_ > yodt) |
E = Q _—
Ko 2 [BCt)+ | ]

K m" 1) | ]
TR [(3&.-)+2.X8£t)+|)

where K+ Téx fs

and combining equations A,33 and A.34 to eliminate D (f).

M= Ky VW, A.33

A.34
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¥
E = K Qs [M <5[t)l-l) !
$(8-1) Ka. (¥Bt)+ 1)
+ s M|

e —

2 Blt)+2

A.35

B (t) was solved numerically from equation A,35

at any time t with

E K, M = &)

)

Knowing B (L) then D (L) was solved for from

equation A,33.
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APPENDIX B
Following the analysis in the main body of this

report (Sections 3 to 5), the solution for the long term

plane expansion is obtained in this appendix,

For the initial expansion process, the following

density velocity and speed of sound profiles are assumed:

 1Bk)
F# /03 ['" _\;":'—%>l B.1

, t
HMr = Mg (_'.:Y._LCC) B.2
‘r"'r; TP
= f— (1214
Qv 04[ (ra-r;)] B.3
Letting R = =& B.4
oY

v

The profiles may be written as

p- al-r]

Hr = Ales RC B.6

o [1-R ] x

Both the total mass and total energy within the radial

Qr

expansion regionare conserved. The total wmass and energy

integrals in this region may be written as
r i

Me « | p-Adr s B
Y. .
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r°
{ a L U
Er - )Pr[m "—‘Z‘ ]Ad" B.9

0
Substituting Eq, B.4 and B.5 into Eq. B.8 and integrating one

obtains

Me - AP’ (YB-Q) B.10
B+ |

Substituting Eqs. B.4 to B.7 into Eq. B.9 and integrating one

obtains

Ee = Ap(f-%) _as |
R 'D )ws'(&-ﬂ B+2P+ |

+p/05(r,—r.->u:.8.c .F(B)PCZ» B.11
Gx+iXarx) N(Br2C)

The isentropic relation is
8!
(&)
A -omparison cf Eqs. B.5 and B.7 now shows that

- B(¥-1) B.13
2

Substitution of Eq. B.13 in Eq. B.1ll now gives the final form

of the energy equation

Er AI[) (w-(‘)g

%(‘@-l) QéEH- )

+/_é: B.C r(n) P(ZC) ) B.14
(B+x +1 Y8+ ZC) r(8+2¢ )
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Equations B.10 and B.l4 are the expressions for the
total mass and energy in the radial expansion region as long
as the center line value of density does not change, (Y’i#o),
and as such, are only valid until the initial expansion wave

has reached the center-line.

For times greater than that time which is required
for the initial expansion to reach the ceunter, other expres-
sions must be derived. The density and velocity profiles

acsumed are

B

ND. - |- Y=r B.15
’ r /')O rp‘r;'
Ue = Ugs (-1, B.16

ra-'n

Since ri 4 O * one may write
- 2 ’
- r

P'. = PC- [’ F'; B.17
Mo B.18

:
—

* A finite core radius l‘c is assumed to exist at the center

line within which the properties are decaying.
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The center core decay is assumed to be of the following

form: £><f\
(“ P\\"o, B.19

where é? is the center line density, f% is the initial
{
!
shocked density, ¥ is the escapc front radius at the time
the rarefraction first reaches the center-line, and r; is the

escape front radius,

Writing ¥ = 1? B.20
Ve
/ .
!:_= “&l
Yo

and the total mass integral as

o
M = SAp,.dr‘ B.22

(2]
anc substituting Eqs. B.17, B.19, B.20 and B.21 into Eq. B.22

and integrating one obtains

D
Moo BB Ay B.23
B+ |
pE = M <B+l} B.24

AT ﬁ

The energy irtegral is written as

%
E - glo O'} + “"'2 Adr B. 25
Tl 80s-1) 2
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Substituting Eqs. B.17 to B.21 and Eqs. B.1Z and B.13 into

Eq. B.25 and integrating the resulting'energy equation is

2
+ Y, Aes | B. 26

2 (B+3)B+2)(Br1)

Eqs. B.24 and B.26, total conservation of mass
and energy respectively, are the valid expressions for all
times greater than the time required for the initial expansion

to reach the center-line,

The speed of sournd, velocity, pressure and density profiles
were cbtained at various time. as functions of non-dimensionalized
radius by using the relations developed in this appendix, and
are shown in Figs. B.1 to B.4, The times indicated on each
profile is the time (in microseconds) from the initiation of the

expansion,
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APPENDIX C

The soluticn for the long term spherical expansion

of a gas cloud into a vacuum is developed in thi: appendix.

The following density, velocity and speed of sound
profiles are assumed for the initial expansion process

(before radial rarefraction reaches the center),

8lt)
= ‘ - _._._r—a
/Dr ps [ l‘o-r‘;,):, et
My = Uas <F—Q )Cét) C.2
-, @)
Qr = Qs| I = (_r‘ n ) .3
G-
Letting R=Y=-0n C.4

The profiles are written as

= (Ds [‘—E]B c.s

Jes RE ' C.6

Qs [‘-R]P C.7

Both the total mass and total energy within the radial

O
|

1]

7S

Or

L}

expansion regionare conserved. The mass and energy integrals

in this regicn are
fs
2
Me - ﬂ pr b v dr c.8

r

Ry Wgﬁ?'v BRI e 3R ARE I 0 SRR A il oy anea? b



|
2 2
Er = ‘ Qe 4 Mo | bretdr C.9
) rf‘” 6 2
v

Substituting Eqs. C.4 and C.5 into Eq. C.8 and integrating,

one obtains:

Me - 4 (-1, l
) WA )@+ 3)(B+2YB+1)

+ hs t (G- Q)L

|
B+2 YA +1)

+ g, *(r,- r>

C.10

GD

Substituting Eqs. C.4 to C.7 into Eq. C.9 and integrating
(with use of the isentropic relation expressed by Eq. B.13)
one obtains:

Ee . ump_od |(6-r)] 2
¥ (8-1) (KBH)CGB«ZX&:BH)

+ 26(r-r; ) + Ql(rrﬁ)_l_g

Cﬁb*rl)(zgew ) X8+ i

+ Mes f(n r) 2c(2c+2 )22+ DR n Ck.) r(8)
2 L(rsdcx 3Be2c +2 (B X+)(B+2¢) (Be2)

w20 (n-1)? B(2c+ D(2e r(2) n(8)
Gre+2)pe2e+iXBe2e) P(B+2¢)

+n'z‘(r°-n-) .2.8.¢  nQ)nr(s) ] C.11
(Br2e+ 1) B+2e) T(Br2L) J
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Equations C.10 and C.11 remain valid as long as the center
value of density does not change (ri*o), and are therefore

applicable only until the expansion head has reached the

center of symmetry.

For times greater than that required for the —
expansion to reach the center, the following derivation is

made:

The density and velocity profiles are assumed to be:

8ct)

2
/.1 ['— <f‘_rl) C.12
6Tt
Hes (Y‘— ﬂ.> ¢.13

. \ -~
Since Y, = O  one may write

’0°['~<r>] o
Mes (r) c.15

The center core decay is assumed to be the following form:

per(E)

L
%o

»
L}

>
]

N
By
n

e

Ny C.17

Writing

and % ’\V, C.18
2

and the total .iass integral as

golD,- Urrrar £.19

— I | " l
I
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and substituting Eqs. C.14, C,16, C.17 and C.18 into

Eq. C.19 and integrating, one obtains

4 (BriYary) rl+1)

The equation cf total energy conservation in

M = ”Tr,O, Fozw, P, 8 ré)ree) C. 20

integral form is
113

_ o o 4’| trera
E ifr[g-@r_-‘)+ _ZL ] rdr c.21

Substitution of Eqs. C,14 to C.18, Egqs. B.12 and B,13 into

Eq. C.21 and integrating yields:

& L
E = 4me’ps [[~,P ] e L ¥XB  per(E)

l' B(f—t) 4(“6‘*%1&54—&-} r‘(5+_|_;>
Pt 3 8 NORE),
Z2 % (Bi)YB+2)B+t) r(r 3)
.22

Equations C,20 and C,22 are the ferms of total mass and
energy conservation equations vwhich are valid for all times
greater than the time required for the initial expansion to

reach the center of symmet 'y,

The speed of sound, velocity, pressure and density
profiles were obtained at various times as functions of
non-dinzusionalized radius by using the relations developed
in this appendix, and are shown in Figs, C.,1 to C.4. The
times indicated on each profile is the time (in microseconds)

from che initiation of the expansion.
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